Telegram Group & Telegram Channel
Direct Preference Optimization: Your Language Model is Secretly a Reward Model [2023] - продолжаем LLM-ликбез

В прошлый раз мы разбирали стандартный RLHF, теперь давайте глянем на самого популярного из конкурентов и наследников, DPO. Авторы статьи говорят про RLHF следующее:

1) Reward model у нас не особо круто работает, особенно вне data distribution, поэтому полноценный её максимизатор будет плохим.
2) Существует ещё и проблема разнообразия, которого при идеальной максимизации не будет.
3) Наши RL методы сами по себе неидеальны и дороги в вычислении и реализации/отладке.

Вместо этого они хотят сформулировать задачу для обучения более простым образом. Давайте посмотрим, что из этого вышло.

Я не погружался в доказательства вывода, изложу своё понимание результата. Авторы замечают, что двухшаговая процедура из обучения Reward Model и затем RL можно переформулировать как одношаговую процедуру обучения на задачу с одной функцией ошибки и без дополнительной Reward Model.

Почему это возможно? Во-первых, в отличие от обычного RL, никаких настоящих наград не существует, а также нет никакого онлайн-взаимодействия со средой. У нас есть только зафиксированный датасет из троек [запрос ; хороший ответ ; плохой ответ].

На таких данных задачу можно формулировать по-разному, но в сущности они будут оптимизировать одно и то же - приближать модель к генерации хороших ответов, отдалять от генерации плохих ответов, при этом накладывая регуляризацию, чтобы модель далеко не убегала от инициализации. Одну из реализаций такой функции ошибки и предложили авторы статьи.

Практического опыта у меня нет, но в статье DPO вроде бы обходит RLHF на задачах. Чуваки в статье про Llama3 пишут, что используют DPO, так что, наверное, метод действительно лучше с учётом простоты реализации.

Замечу, что метод не решает обозначенные мною проблемы в посте про RLHF. Они вытекают из самих данных с человеческой разметкой, которые, во-первых, зафиксированы, а значит, не происходит GAN-подобного обучения, в котором данные пытаются "атаковать" модель в её слабые места и тем самым позволяя ей улучшаться, а, во-вторых, недостаточно велики и разнообразны, чтобы для решения поставленной задачи нужно было обучаться логическому размышлению и построению качественной картины мира.

Наверняка для RLHF/DPO придумали множество модификаций (в том числе всякие конструкции поверх LLM типа CoT), которые дают более крутой результат, но с таким соотношением пространства параметров и объёма данных решить задачу по-нормальному пока что вряд ли получится.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/221
Create:
Last Update:

Direct Preference Optimization: Your Language Model is Secretly a Reward Model [2023] - продолжаем LLM-ликбез

В прошлый раз мы разбирали стандартный RLHF, теперь давайте глянем на самого популярного из конкурентов и наследников, DPO. Авторы статьи говорят про RLHF следующее:

1) Reward model у нас не особо круто работает, особенно вне data distribution, поэтому полноценный её максимизатор будет плохим.
2) Существует ещё и проблема разнообразия, которого при идеальной максимизации не будет.
3) Наши RL методы сами по себе неидеальны и дороги в вычислении и реализации/отладке.

Вместо этого они хотят сформулировать задачу для обучения более простым образом. Давайте посмотрим, что из этого вышло.

Я не погружался в доказательства вывода, изложу своё понимание результата. Авторы замечают, что двухшаговая процедура из обучения Reward Model и затем RL можно переформулировать как одношаговую процедуру обучения на задачу с одной функцией ошибки и без дополнительной Reward Model.

Почему это возможно? Во-первых, в отличие от обычного RL, никаких настоящих наград не существует, а также нет никакого онлайн-взаимодействия со средой. У нас есть только зафиксированный датасет из троек [запрос ; хороший ответ ; плохой ответ].

На таких данных задачу можно формулировать по-разному, но в сущности они будут оптимизировать одно и то же - приближать модель к генерации хороших ответов, отдалять от генерации плохих ответов, при этом накладывая регуляризацию, чтобы модель далеко не убегала от инициализации. Одну из реализаций такой функции ошибки и предложили авторы статьи.

Практического опыта у меня нет, но в статье DPO вроде бы обходит RLHF на задачах. Чуваки в статье про Llama3 пишут, что используют DPO, так что, наверное, метод действительно лучше с учётом простоты реализации.

Замечу, что метод не решает обозначенные мною проблемы в посте про RLHF. Они вытекают из самих данных с человеческой разметкой, которые, во-первых, зафиксированы, а значит, не происходит GAN-подобного обучения, в котором данные пытаются "атаковать" модель в её слабые места и тем самым позволяя ей улучшаться, а, во-вторых, недостаточно велики и разнообразны, чтобы для решения поставленной задачи нужно было обучаться логическому размышлению и построению качественной картины мира.

Наверняка для RLHF/DPO придумали множество модификаций (в том числе всякие конструкции поверх LLM типа CoT), которые дают более крутой результат, но с таким соотношением пространства параметров и объёма данных решить задачу по-нормальному пока что вряд ли получится.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/221

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

Knowledge Accumulator from id


Telegram Knowledge Accumulator
FROM USA